Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery

نویسندگان

  • Richard A. Fernandes
  • John R. Miller
  • Jing M. Chen
  • Irene G. Rubinstein
چکیده

Leaf area index (LAI) is an important surface biophysical parameter as a measure of vegetation cover, vegetation productivity, and as an input to ecosystem process models. Recently, a number of coarse-scale (1-km) LAI maps have been generated over large regions including the Canadian boreal forest. This study focuses on the production of fine-scale (V 30-m) LAI maps using the forest light interaction modelclustering (FLIM-CLUS) algorithm over selected boreal conifer stands and the subsequent comparison of the fine-scale maps to coarsescale LAI maps synthesized from Landsat TM imagery. The fine-scale estimates are validated using surface LAI measurements to give relative root mean square errors of under 7% for jack pine sites and under 14% for black spruce sites. In contrast, finer scale site mean LAI ranges between 49% and 86% of the mean of surface estimates covering only part of the sites and 54% to 110% of coarse-scale site mean LAI. Correlations between fine-scale and coarse-scale estimates range from near 0.5 for 30-m coarse-scale images to under 0.3 to 1-km coarse-scale images but increase to near 0.90 after imposing fine-scale zero LAI areas in coarse-scale estimates. The increase suggests that coarse-scale image-based LAI estimates require consideration of sub-pixel open areas. Both FLIM-CLUS and coarse-scale site mean LAI are substantially lower than surface estimates over northern sites. The assumption of spatially random residuals in regression-based estimates of LAI may not be valid and may therefore add to local bias errors in estimating LAI remotely. Differences between fine-scale airborne LAI maps and 30-m-scale Landsat TM LAI maps suggests that, for sparse boreal conifer stands, LAI maps produced from Landsat TM alone may not always be sufficient for validation of coarser scale LAI maps. In addition, previous studies may have used biased LAI estimates over the study site. Fine-scale spatial LAI maps offer one means of assessing and correcting for effects of sub-pixel open area patches and for characterising the spatial pattern of residuals in coarse-scale LAI estimates in comparison to the true distribution of LAI on the surface. D 2003 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index

Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a lot of interest in extracti...

متن کامل

Leaf area index measurements

Leaf area index (LAI) is a key structural characteristic of forest ecosystems because of the role of green leaves in controlling many biological and physical processes in plant canopies. Accurate LA1 estimates are required in studies of ecophysiology, atmosphere-ecosystem interactions, and global change. The objective of this paper is to evaluate LA1 values obtained by several research teams us...

متن کامل

Detecting a fire-sensitive species in a fire-prone landscape: object-based rule-set driven approaches

The Northern Cypress Pine, Callitris intratropica (fam: Cupressaceae) is a fire sensitive conifer that exists in a range of environments across the tropical savanna landscapes of Australia's Northern Territory. Its susceptibility to intense fires means that populations are vulnerable under late season high intensity burning regimes, limiting the range to areas that are protected from such fires...

متن کامل

Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies

Leaf chlorophyll content in coniferous forest canopies, a measure of stand condition, is the target of studies and models linking leaf reflectance and transmittance and canopy hyperspectral reflectance imagery. The viability of estimation of needle chlorophyll content from airborne hyperspectral optical data through inversion of linked leaf level and canopy level radiative transfer models is di...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004